Off-policy evaluation (OPE) is a method for estimating the return of a target policy using some pre-collected observational data generated by a potentially different behavior policy. In some cases, there may be unmeasured variables that can confound the action-reward or action-next-state relationships, rendering many existing OPE approaches ineffective. This paper develops an instrumental variable (IV)-based method for consistent OPE in confounded Markov decision processes (MDPs). Similar to single-stage decision making, we show that IV enables us to correctly identify the target policy's value in infinite horizon settings as well. Furthermore, we propose an efficient and robust value estimator and illustrate its effectiveness through extensive simulations and analysis of real data from a world-leading short-video platform.
translated by 谷歌翻译
In this paper, we present a simple yet surprisingly effective technique to induce "selective amnesia" on a backdoored model. Our approach, called SEAM, has been inspired by the problem of catastrophic forgetting (CF), a long standing issue in continual learning. Our idea is to retrain a given DNN model on randomly labeled clean data, to induce a CF on the model, leading to a sudden forget on both primary and backdoor tasks; then we recover the primary task by retraining the randomized model on correctly labeled clean data. We analyzed SEAM by modeling the unlearning process as continual learning and further approximating a DNN using Neural Tangent Kernel for measuring CF. Our analysis shows that our random-labeling approach actually maximizes the CF on an unknown backdoor in the absence of triggered inputs, and also preserves some feature extraction in the network to enable a fast revival of the primary task. We further evaluated SEAM on both image processing and Natural Language Processing tasks, under both data contamination and training manipulation attacks, over thousands of models either trained on popular image datasets or provided by the TrojAI competition. Our experiments show that SEAM vastly outperforms the state-of-the-art unlearning techniques, achieving a high Fidelity (measuring the gap between the accuracy of the primary task and that of the backdoor) within a few minutes (about 30 times faster than training a model from scratch using the MNIST dataset), with only a small amount of clean data (0.1% of training data for TrojAI models).
translated by 谷歌翻译
Autoregressive language modeling (ALM) have been successfully used in self-supervised pre-training in Natural language processing (NLP). However, this paradigm has not achieved comparable results with other self-supervised approach in computer vision (e.g., contrastive learning, mask image modeling). In this paper, we try to find the reason why autoregressive modeling does not work well on vision tasks. To tackle this problem, we fully analyze the limitation of visual autoregressive methods and proposed a novel stochastic autoregressive image modeling (named SAIM) by the two simple designs. First, we employ stochastic permutation strategy to generate effective and robust image context which is critical for vision tasks. Second, we create a parallel encoder-decoder training process in which the encoder serves a similar role to the standard vision transformer focus on learning the whole contextual information, and meanwhile the decoder predicts the content of the current position, so that the encoder and decoder can reinforce each other. By introducing stochastic prediction and the parallel encoder-decoder, SAIM significantly improve the performance of autoregressive image modeling. Our method achieves the best accuracy (83.9%) on the vanilla ViT-Base model among methods using only ImageNet-1K data. Transfer performance in downstream tasks also show that our model achieves competitive performance.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Controllable summarization allows users to generate customized summaries with specified attributes. However, due to the lack of designated annotations of controlled summaries, existing works have to craft pseudo datasets by adapting generic summarization benchmarks. Furthermore, most research focuses on controlling single attributes individually (e.g., a short summary or a highly abstractive summary) rather than controlling a mix of attributes together (e.g., a short and highly abstractive summary). In this paper, we propose MACSum, the first human-annotated summarization dataset for controlling mixed attributes. It contains source texts from two domains, news articles and dialogues, with human-annotated summaries controlled by five designed attributes (Length, Extractiveness, Specificity, Topic, and Speaker). We propose two simple and effective parameter-efficient approaches for the new task of mixed controllable summarization based on hard prompt tuning and soft prefix tuning. Results and analysis demonstrate that hard prompt models yield the best performance on all metrics and human evaluations. However, mixed-attribute control is still challenging for summarization tasks. Our dataset and code are available at https://github.com/psunlpgroup/MACSum.
translated by 谷歌翻译
Indoor scenes typically exhibit complex, spatially-varying appearance from global illumination, making inverse rendering a challenging ill-posed problem. This work presents an end-to-end, learning-based inverse rendering framework incorporating differentiable Monte Carlo raytracing with importance sampling. The framework takes a single image as input to jointly recover the underlying geometry, spatially-varying lighting, and photorealistic materials. Specifically, we introduce a physically-based differentiable rendering layer with screen-space ray tracing, resulting in more realistic specular reflections that match the input photo. In addition, we create a large-scale, photorealistic indoor scene dataset with significantly richer details like complex furniture and dedicated decorations. Further, we design a novel out-of-view lighting network with uncertainty-aware refinement leveraging hypernetwork-based neural radiance fields to predict lighting outside the view of the input photo. Through extensive evaluations on common benchmark datasets, we demonstrate superior inverse rendering quality of our method compared to state-of-the-art baselines, enabling various applications such as complex object insertion and material editing with high fidelity. Code and data will be made available at \url{https://jingsenzhu.github.io/invrend}.
translated by 谷歌翻译
视觉任务的输出格式和相关内容差异很大,因此很难以相同的结构处理它们。一个主要障碍在于对象级别的视觉任务中的高维输出。在本文中,我们提出了一个以对象为中心的视觉框架OBJ2Seq。 OBJ2Seq将对象作为基本单元,并将大多数对象级的视觉任务视为对象的序列生成问题。因此,这些视觉任务可以分为两个步骤。首先识别给定类别的对象,然后为每个对象生成一个序列。输出序列的定义对于不同的任务有所不同,并且通过将这些序列与地面真相目标匹配来监督模型。 OBJ2SEQ能够灵活地确定输入类别以满足自定义要求,并可以轻松扩展到不同的视觉任务。在对MS Coco进行实验时,OBJ2SEQ在对象检测时可获得45.7%的AP,多标签分类的89.0%AP和人类姿势估计的65.0%AP。这些结果证明了其通常应用于不同视觉任务的潜力。代码已在以下网址提供:https://github.com/casia-iva-lab/obj2seq。
translated by 谷歌翻译
如今,基础模型已成为人工智能中的基本基础设施之一,铺平了通往通用情报的方式。但是,现实提出了两个紧急挑战:现有的基础模型由英语社区主导;用户通常会获得有限的资源,因此不能总是使用基础模型。为了支持中文社区的发展,我们介绍了一个名为Fengshenbang的开源项目,该项目由认知计算与自然语言研究中心(CCNL)领导。我们的项目具有全面的功能,包括大型预培训模型,用户友好的API,基准,数据集等。我们将所有这些都包装在三个子项目中:风水次模型,风水框架和狂热基准。 Fengshenbang的开源路线图旨在重新评估中国预培训的大型大型模型的开源社区,促使整个中国大型模型社区的发展。我们还希望构建一个以用户为中心的开源生态系统,以允许个人访问所需的模型以匹配其计算资源。此外,我们邀请公司,大学和研究机构与我们合作建立大型开源模型的生态系统。我们希望这个项目将成为中国认知情报的基础。
translated by 谷歌翻译
基于图形的模型最近在人的重新识别任务中取得了巨大的成功,该任务首先计算了不同人之间的图形拓扑结构(亲和力),然后将信息传递给他们的信息以实现更强的功能。但是,我们在可见的红外人员重新识别任务(VI-REID)中发现了现有的基于图的方法,因为有两个问题:1)火车测试模式平衡差距,这是VI-REID任务的属性。两个模式数据的数量在训练阶段平衡,但推理极为不平衡,导致基于图的VI-REID方法的概括较低。 2)由图形模块的端到端学习方式引起的亚最佳拓扑结构。我们分析训练有素的输入特征会削弱图形拓扑的学习,从而使其在推理过程中不够概括。在本文中,我们提出了一种反事实干预特征转移(CIFT)方法来解决这些问题。具体而言,均匀和异质的特征转移(H2FT)旨在通过两种独立的设计的图形模块和不平衡的场景模拟来减少火车测试模态差距。此外,提出了反事实关系干预(CRI)来利用反事实干预和因果效应工具来突出拓扑结构在整个训练过程中的作用,这使图形拓扑结构更加可靠。对标准VI-REID基准测试的广泛实验表明,CIFT在各种设置下都优于最新方法。
translated by 谷歌翻译
在3D视觉中,视觉重新定位已被广泛讨论:鉴于预构建的3D视觉图,估计查询图像的6 DOF(自由度)姿势。大规模室内环境中的重新定位可实现有吸引力的应用程序,例如增强现实和机器人导航。但是,当相机移动时,在这种环境中,外观变化很快,这对于重新定位系统来说是具有挑战性的。为了解决这个问题,我们建议一种基于虚拟视图综合方法Rendernet,以丰富有关此特定情况的数据库和完善姿势。我们选择直接渲染虚拟观点的必要全局和本地特征,而不是渲染需要高质量3D模型的真实图像,并分别将它们应用于后续图像检索和功能匹配操作中。所提出的方法在很大程度上可以改善大规模室内环境中的性能,例如,在INLOC数据集中获得7.1 \%和12.2 \%的改善。
translated by 谷歌翻译